

## Waveform Event Labeling Pipeline for ML-based Classification of Incipient Faults

| Project type:                                                                                             | Semester project      | MSc thesis             | 🗌 Internship           |
|-----------------------------------------------------------------------------------------------------------|-----------------------|------------------------|------------------------|
| Project responsible (email):                                                                              | guillaume.tauzin@zapl | niro.ch                |                        |
| Project description and objectives:                                                                       |                       |                        |                        |
| Equipment on the grid typically show early signs of failure that can be observed on current and voltage   |                       |                        |                        |
| waveforms and are called Incipient Faults (IFs). As each type of equipment failure has a unique           |                       |                        |                        |
| waveform signature, we want to classify IFs to enable our clients to perform predictive maintenance on    |                       |                        |                        |
| the failing equipment. In order to train and evaluate ML-based classification models, we need to collect  |                       |                        |                        |
| a large amount of expert-labelled data. This project focuses on setting up a fully-fledged data labelling |                       |                        |                        |
| solution. We have identified three main objectives for this project:                                      |                       |                        |                        |
| 1. Contribute to the definition of the IFs labelling task.                                                |                       |                        |                        |
| 2. Setup and deploy a customized labelling solution.                                                      |                       |                        |                        |
| 3. Build ML models and pipelines to support expert labellers.                                             |                       |                        |                        |
| Tasks:                                                                                                    |                       |                        |                        |
| • Conduct a literature review of IFs on distribution networks to define the appropriate set of            |                       |                        |                        |
| labels and present a short report.                                                                        |                       |                        |                        |
| • Conduct a review of the available tools for multivariate time series labelling.                         |                       |                        |                        |
| <ul> <li>Setup and deploy the labeling solution as well as the necessary data pipelines.</li> </ul>       |                       |                        |                        |
| • Design ML models for interactive labeling (find the segments to label) and/or automatic pre-            |                       |                        |                        |
| labeling (suggest most-likely labels for each segment).                                                   |                       |                        |                        |
| Required skills:                                                                                          |                       |                        |                        |
| Understanding of data science concepts.                                                                   |                       |                        |                        |
| • Hands on Python and willingness to explore the design and deployment of data/ML pipelines.              |                       |                        |                        |
| • Basic software engineering knowledge – how to write modular code – how to test the code.                |                       |                        |                        |
| Other benefits and/or compensation:                                                                       |                       |                        |                        |
| Depending on the final project type, scope and deliverables, Zaphiro may consider providing additional    |                       |                        |                        |
| adequate compensation.                                                                                    |                       |                        |                        |
| About Zaphiro:                                                                                            |                       |                        |                        |
| Zaphiro is an innovative smart grid company based in Lausanne, Switzerland, and Milan, Italy, that was    |                       |                        |                        |
| founded in 2017 as a spin-off from EPFL and is backed by well renowned international groups such as       |                       |                        |                        |
| ABB and CDP Ventures.                                                                                     |                       |                        |                        |
| Our product, SynchroGuard, is the first distribution grid monitoring & automation system based on         |                       |                        |                        |
| D-PMU (Distribution-Phasor Measurement Unit) technology, specifically designed to easily retrofit         |                       |                        |                        |
| distribution substations and integrate with existing control room solutions (e.g., SCADA, DMS).           |                       |                        |                        |
| SynchroGuard helps utilities i                                                                            | ncrease grid observal | oility, particularly i | n presence of high DER |
| penetration, and improve grid resiliency by reducing the impact of blackouts on their consumers.          |                       |                        |                        |