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Abstract 

This paper investigates the importance of the estimation uncertainty in Distribution System State Estimation (DSSE). The study 

is carried out using data from a real implementation of DSSE in a medium-voltage distribution network in Switzerland, which 

is equipped with Distribution Phasor Measurement Units (D-PMUs). The study presents the computation of the uncertainty of 

state estimates and discusses the benefit of considering the estimated state uncertainty while analysing the DSSE results, which 

increases the reliability in correctly detecting key grid events, such as reverse power flows and line congestions.

1. Introduction 

Distributed networks are experiencing an unprecedented 

changes due to increasing load and distributed generation 

causing bidirectional power flow [1]. The intermittent and 

unpredictable nature of Distributed energy resources (DERs) 

pose significant operational challenges to Distribution System 

Operators (DSOs), who are now seeking to increase the 

situational awareness of their networks to manage these 

uncertainties [2]. Distribution System State Estimation 

(DSSE) is expected to play a significant role in addressing 

these challenges by providing comprehensive insights into 

grid operations. Unlike Load Flow computations that must 

have all nodal powers, DSSE computes the complete grid state, 

i.e., voltages, currents, power flows at all nodes/lines, from a 

limited set of measurements. This capability allows DSOs to 

minimize investment costs by placing monitoring devices only 

at strategic grid nodes, such as Remote Terminal Units (RTUs) 

or Distribution-Phasor Measurement Units (D-PMUs). 

Moreover, DSSE offers the advantage of consolidating digital 

twin models of the distribution grid, including line parameters 

and topology, through cross-validation with real-time field 

measurements. 

Due to the scarcity of measurements in distribution grids, often 

to ensure full grid observability the DSSE necessitates the use 

of pseudo-measurements, which are inherently less accurate 

than real-time measurements. While this approach enables 

DSSE implementation even with few real-time measurement 

deployed, it decreases the accuracy of some state estimates [3]. 

In such conditions, considering the uncertainties associated 

with the estimated grid states is important to avoid mistaken 

analysis. In existing literature, few studies have focused on 

DSSE uncertainty. The authors in [4] investigated the sources 

of uncertainty in voltage magnitude estimation, highlighting 

the influence of both voltage measurements and branch current 

accuracy on the results. In [5], the focus shifted to analytically 

examining the impact of flow measurements on branch current 

estimation, offering insights into meter placement strategies to 

achieve specific accuracy targets for monitoring. While these 

studies provide valuable theoretical frameworks, they lack a 

validation on real-world network data, and a demonstration on 

how these values can be used by DSOs in daily operations. 

On this respect, the paper presents the results of a DSSE 

solution in a real medium-voltage (MV) network operated by 

Services industriels de Lausanne (SiL), a major DSO in 

Switzerland. SiL has installed the D-PMU-based grid 

monitoring system of Zaphiro Technologies in part of its 

distribution grid to enhance both power flow observability and 

fault location capabilities. A real-time D-PMU-based DSSE 

continuously estimates the MV network state. In this paper, the 

accuracy of the computed uncertainty of the estimated states is 

assessed using field data. Additionally, we discuss practical 

use cases where we show the importance of the estimated state 

uncertainty when analysing the DSSE results. 

The paper presents first some theory on estimated state 

uncertainty computation using Linear Weighted Least Square 

(LWLS) algorithm. Then it describes the measurement 

infrastructure and the characteristics of the selected MV grid. 

Finally, it presents a detailed analysis on the uncertainty of the 

estimated state provided by DSSE. 

2. Estimated State Uncertainty in Distribution 

System State Estimation 

DSSE is a statistical procedure that allows to compute the 

complete state of a power grid (i.e., voltages and current flows 

in all nodes/branches) by combining measurements from a 
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limited set of grid nodes with a model of the grid. Often in 

distribution grids the monitoring devices are not enough to 

guarantee full observability of the grid, so many DSSE 

solutions adopt pseudo-measurements, namely measurements 

with large uncertainties derived from historical data or 

forecasts [6]. 

In this paper, the focus is DSSE using D-PMUs and, when 

needed, pseudo-measurements in unmonitored nodes. In 

particular, we use the LWLS algorithm which is characterised 

by a linear measurement model linking the D-PMU 

measurements with the state variables represented by the 

voltages at each nodes [2]. It is well known that D-PMU-based 

DSSE has several advantages [7], the main ones being a non-

iterative and numerically stable algorithm due to its linearity, 

and the coherency of the measurement set thanks to the 

synchronized measurements. 

Beyond estimating the complete grid state variables, the DSSE 

also enables the computation of their uncertainties. These 

uncertainties are captured by the covariance matrix of the 

estimated states, whose diagonal elements represent the 

variances of the individual state variables. The covariance 

matrix is defined as: 

 𝑐𝑜𝑣(𝒙) = 𝑮−1 ( 1 ) 

where 𝒙 is the estimated state and G is the well-known Gain 

matrix, as explained in [2]. Concerning the other estimated 

electrical quantities (i.e., nodal/branch currents/powers), their 

uncertainties can be derived from the covariance matrix of the 

state variables using the error propagation principles. If we 

consider an estimated quantity q, we define the uncertainty uq 

of its estimated value �̂�𝑞  as: 

 𝑢𝑞 = 3𝜎�̂� ( 2 ) 

𝑤here 𝜎�̂� is the standard deviation of the estimated quantity. 

Therefore, the uncertainty uq corresponds to a 99.7% 

confidence interval and means that there is a 99.7% probability 

that the true value falls within the interval �̂�𝑞  ± uq. 

3. Grid structure and D-PMU placement 

The study presented in this paper is based on a real MV feeder 

in Switzerland operated by Services Industriels de Lausanne 

(SiL). The feeder supplies a small residential area in Lausanne 

and has been equipped with 6 D-PMUs of Zaphiro 

Technologies. Figure 1 illustrates the single-line diagram of 

the selected MV feeder and the placement of the D-PMUs. The 

feeder is radial, operated at a rated voltage of 11.5 kV, and 

consists of 16 MV lines, 12 MV/LV secondary substations, 

and 4 switching substations. The D-PMUs measure branch 

current phasors at every departure using Rogowski coils. The 

only voltage measurement is provided by the D-PMU at the 

primary substation which is connected to the voltage 

transformers on the substation busbar. 

Figure 1: Single line diagram of the selected MV feeder. 

To illustrate the grid operating conditions considered in this 

paper, Figure 2 shows the time profiles for a full day at the 

primary substation for voltage and active power flows, with 

positive flows exiting the bus. As we can observe, the grid is 

mostly passive, apart from few instants around noon where 

there is a reverse power flow due to the production of PV 

panels. 

 
Figure 2: Time profiles for one day of voltage (a) and active 

power flows (b) at the primary substation. 

4. Methodology to assess the accuracy of the 

estimated state uncertainty 

The objective of this study is twofold: (i) to assess the accuracy 

of the computation of the estimated state uncertainty, and (ii) 

to show the usefulness of considering the estimated state 

uncertainty while analysing the estimated grid state. 

The assessment process involves two key steps. The first step 

consists in obtaining a reference grid state to serve as a 

baseline for the rest of the analysis. Since this is a real grid 

installation, the true state of the grid is inherently unknown. 

However, by utilizing all D-PMU measurements the grid 

becomes fully observable [2], thus ensuring highly accurate 

estimates of all the state variables. Therefore, the state 

estimated in this way can be used as the reference state 

throughout the paper for performance assessment.  

The second step consists in running the DSSE using only four 

D-PMUs in nodes 1, 4, 7, and 14, as shown in Figure 3. This 

configuration simulates a realistic scenario for an extensive 

deployment, where only 25% of the grid nodes are measured. 

To maintain grid observability under these conditions, nodal 
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current pseudo-measurements are incorporated at unmonitored 

MV/LV secondary substations. The DSSE results, including 

both the estimated variables and their associated uncertainty, 

are then compared to the reference state obtained in the first 

step. 

Figure 3: Single-line diagram illustrating the considered 

measurement configuration. 

For the purpose of this study, we used a time window of one 

day at a resolution of one measurement per minute (despite D-

PMUs report synchrophasors at 50 frames-per-second), 

resulting in a total of 1,440 time-steps. The assessment focuses 

exclusively on positive sequence voltages and currents, 

whereas powers are the sum of the three-phases. 

Furthermore, the measurement variances of real-time 

measurements are computed according to the accuracy class of 

the voltage and current sensor as shown in [7]. Concerning the 

pseudo-measurements, they are significantly less accurate than 

the D-PMU measurements, since their values and variances are 

derived from very limited information including the rated 

power of the transformers. Pseudo-measurements are used at 

unmonitored nodes in Figure 3, namely nodes 2, 3, 5, 8, 10, 

11, 13, 15, 16. The switching substations are zero-injection 

buses that are integrated in the DSSE as equality constraints, 

as presented in [7]. 

To evaluate the performance of DSSE in estimating a given 

state variable, three metrics are chosen: 

• the reliability (Rel) of the DSSE uncertainty interval, 

defined as the percentage of timestamps where the 

reference state falls within the uncertainty intervals; 

• the uncertainty (u) of an estimated quantity, defined 

in equation ( 2 ) as 3 times the standard deviation of 

the estimated quantity; 

• the absolute error (AE) of an estimated state variable 

xk at time t, defined as: 

 

𝐴𝐸 =  |𝑥𝑘,𝑡
𝑒𝑠𝑡 − 𝑥𝑘,𝑡

𝑟𝑒𝑓
| ( 3 ) 

 

For AE and u, we compute the median value and the 95th 

percentile (P95) on all time-steps in order to capture the central 

tendency and extreme cases, respectively. 

5. Accuracy assessment of the estimated state 

uncertainty with real field data 

In this section, we evaluate the performance of the DSSE by 

analysing its ability to estimate both nodal and branch 

quantities and the associated uncertainties. 

5.1 Uncertainty of estimated line power flows 
In the DSSE framework, buses/branches can be classified as 

either "monitored", namely directly measured with a real-time 

measurement, or "unmonitored". For the measurement 

configuration shown in Figure 3, the unmonitored lines are the 

ones connecting nodes 2-3, 2-13 and 15-16, while the other 

lines are either monitored or connected to zero-injection buses. 

To evaluate DSSE performance in estimating line power 

flows, Figure 4 and Figure 5 show the active and reactive 

power flows for the monitored line 3-4 and the unmonitored 

line 2-13, respectively.  

 

Figure 4: Time-series of the estimated active (a) and reactive 

(b) powers on the monitored line 3-4. 

 

Figure 5: Time-series of the estimates active (a) and reactive 

(b) powers on the unmonitored line 2-13. 
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Table 1: Performance metrics of DSSE estimations for active 

powers in the three unmonitored lines. 

Line Rel [%] 
AE [kW] u [kW] 

median P95 median P95 

2-3 99.9 18.3 60.8 85.8 86.3 

2-13 99.9 27.3 57.7 85.6 86.1 

15-16 99.4 18.2 36.5 52.2 89.4 

 

Table 2: Performance metrics of DSSE estimations for 

reactive powers in unmonitored lines. 

Line Rel [%] 
AE [kVAr] u [kVAr] 

median P95 median P95 

2-3 100 4.3 13.2 29.4 30.3 

2-13 100 2.6 8.2 28.7 29.2 

15-16 99.9 1.7 6.8 18.5 29.5 

 

Figure 4 shows that both active and reactive power flows in 

the monitored line 3-4 are estimated with high accuracy, since 

the estimated value perfectly follows the reference. The 

uncertainty band is not visible since it is very narrow of about 

±10 kW. The same remarks apply for all the monitored lines. 

In the unmonitored line 2-13 in Figure 5, the estimated power 

flows still follow quite closely the reference value, but there 

are periods, such as from 20:00 to midnight, where the 

estimated active power slightly diverges from the reference. 

This is expected since it is an unmonitored line where the 

estimated power flow is affected by the inaccurate pseudo-

measurements in nodes 2, 3, and 13, which cannot perfectly 

capture real-time grid dynamics due to their dependence on 

non-real-time information. However, we can observe that the 

reference value remains within the boundaries of the 

uncertainty interval, showing that considering the uncertainty 

is highly valuable when using the DSSE results. 

Table 1 and Table 2 present the metrics defined in Section 4 

for the three unmonitored lines concerning respectively active 

and reactive power flows. The reliability (Rel) of the estimates 

is close to 100% for all the lines, demonstrating that the 

interval defined as “estimated value ± uncertainty” is able to 

contain the reference value, which is the target. Both active 

and reactive power flows are accurately estimated despite the 

lines being unmonitored, with median value of the absolute 

error (AE) that is respectively < 30 kW and < 5 kVAr. It is 

also interesting to observe that for lines 2-3 and 2-13 the 

uncertainty interval is quite constant along the day, which is 

visible since the median and the 95th percentile (P95) of the 

uncertainty have similar value. On the contrary, for line 15-16 

the median and the P95 are different because the uncertainty 

varies along the day due to changes during the day in the 

uncertainties of pseudo-measurements in the unmonitored area 

composed of nodes 15 and 16. 

It is also worth observing that in line 2-13 in Figure 5, the 

actual active power flow reverses direction around 10:00 while 

the estimated value remains positive. If we relied solely on the 

estimated value, this inversion would go unnoticed. However, 

the lower bound of the uncertainty interval includes also 

negative values, highlighting a notable probability of power 

flow reversal and demonstrating the value of incorporating 

uncertainty when analysing the DSSE data. 

5.2 Uncertainty of estimated voltage and nodal power flows 
The results of voltage and nodal apparent power flow are 

shown for the monitored node 1 in Figure 6 and two 

unmonitored nodes: node 2 in Figure 7 and node 5 in Figure 8.  

Figure 6: Time-series of the estimated voltage (a) and nodal 

apparent power flow (b) at the monitored node 1. 

Figure 7: Time-series of the estimated voltage (a) and nodal 

apparent power flow (b) at the unmonitored node 2. 

Figure 8: Time-series of the estimated voltage (a) and nodal 

apparent power flow (b) at the unmonitored node 5. 

Both monitored and unmonitored nodes exhibit comparable 

voltage uncertainties, which are approximately 30 Volt or 

0.5% of the nominal voltage. This indicates that the 

measurement error (related to 0.5 class voltage transformers) 

is the primary contributor to voltage estimation uncertainty 
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and that other sources of error, such as power flow estimation 

errors, are negligible in comparison. 

Regarding the nodal power estimates, the monitored node 1 

has an uncertainty of approximately ±20 kVA. Similar 

uncertainty is observed for all the other monitored nodes 4, 7, 

14. The unmonitored node 2 exhibits a significantly higher 

uncertainty of about ±100 kVA, whereas node 5 has an 

uncertainty of approximately ±15 kVA, which is in the same 

range as the monitored node. The difference in uncertainties 

between nodes 2 and 5 can be explained by analysing the 

measurement configuration in Figure 3. Node 2 is part of a grid 

region delimited by D-PMUs with multiple unmonitored 

nodes, namely the region with nodes 2, 3, and 13. In this 

configuration, the DSSE relies also on high-variance pseudo-

measurements to estimate the power flows of the unmonitored 

nodes in the area, leading to larger uncertainties. Such regions 

are referred to as regions with low local measurement 

redundancy. On the contrary, node 5 is situated in a region with 

high local redundancy, since it lies between nodes 4, 6, and 7, 

which are either equipped with a D-PMU or a zero-injection 

node. The availability of multiple accurate real-time 

measurements around node 5 allows the DSSE to accurately 

estimate the nodal power flow at this node. 

Table 3 presents the metrics defined in Section 4 for all 

unmonitored nodes, where the nodes are grouped per grid area. 

For areas with only one unmonitored node (nodes 5, 8, 10, and 

11), the nodal power estimates are very accurate: AE of few 

kVA and uncertainty < 20 kVA since these nodes are in high 

local redundancy areas. In contrast, the low local redundancy 

areas, namely the area with nodes 2, 3, 13 as well as the area 

with nodes 15 and 16, exhibit higher AE. However, we can 

observe that the reliability of the estimates remains high, 

because the DSSE correctly increases the computed 

uncertainty in areas with low local redundancy and thus the 

reference value remains within the uncertainty boundaries in 

>99% of the cases.  

Table 3: Performance metrics of DSSE estimations for nodal 

apparent power flows in unmonitored nodes. 

Node Rel [%] 
AE [kVA] u [kVA] 

median P95 median P95 

5 100 2 6 13.5 17.2 

8 100 0.03 1.7 1.8 11.1 

10 100 3.8 6.6 13.2 17.8 

11 100 0.2 0.3 4.4 6 

2 100 22.6 55.6 102.5 103.6 

3 99.9 18.6 61.3 85 85.7 

13 99.9 24.1 56.6 85 85.7 

15 99.9 17.2 36.2 52 89.3 

16 99.4 18.2 36.5 52 89.3 

 

6. Conclusion 
The scarcity of measurement devices in distribution grids 

requires DSSE to use inaccurate pseudo-measurements that 

affect the accuracy of some state estimates. By leveraging real 

data from a D-PMU-based DSSE implemented in a real 

distribution grid in Switzerland, this study has demonstrated 

the benefits for DSOs of considering also the estimated state 

uncertainty when performing studies and taking decisions 

based on DSSE data. We demonstrated that, while sometimes 

the estimated value slightly diverges from the true value, the 

estimated value remains most of the time within the boundaries 

of the uncertainty interval, showing that the uncertainty is 

correctly computed. The use of the uncertainty of estimated 

states increases reliability in correctly detecting key grid 

events, such as reverse power flows or line congestions, that 

can be overlooked when relying solely on estimated values. 
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